skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Joshi, Amol S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Limited data availability is a challenging problem in the latent fingerprint domain. Synthetically generated fingerprints are vital for training data-hungry neural network-based algorithms. Conventional methods distort clean fingerprints to generate synthetic latent fingerprints. We propose a simple and effective approach using style transfer and image blending to synthesize realistic latent fingerprints. Our evaluation criteria and experiments demonstrate that the generated synthetic latent fingerprints preserve the identity information from the input contact- based fingerprints while possessing similar characteristics as real latent fingerprints. Additionally, we show that the generated fingerprints exhibit several qualities and styles, suggesting that the proposed method can generate multiple samples from a single fingerprint. 
    more » « less
  2. Using fingerphoto images acquired from mobile cameras, low-quality sensors, or crime scenes, it has become a challenge for automated identification systems to verify the identity due to various acquisition distortions. A significant type of photometric distortion that notably reduces the quality of a fingerphoto is the blurring of the image. This paper proposes a deep fingerphoto deblurring model to restore the ridge information degraded by the image blurring. As the core of our model, we utilize a conditional Generative Adversarial Network (cGAN) to learn the distribution of natural ridge patterns. We perform several modifications to enhance the quality of the reconstructed (deblurred) fingerphotos by our proposed model. First, we develop a multi-stage GAN to learn the ridge distribution in a coarse-to-fine framework. This framework enables the model to maintain the consistency of the ridge deblurring process at different resolutions. Second, we propose a guided attention module that helps the generator to focus mainly on blurred regions. Third, we incorporate a deep fingerphoto verifier as an auxiliary adaptive loss function to force the generator to preserve the ID information during the deblurring process. Finally, we evaluate the effectiveness of the proposed model through extensive experiments on multiple public fingerphoto datasets as well as real-world blurred fingerphotos. In particular, our method achieves 5.2 dB, 8.7%, and 7.6% improvement in PSNR, AUC, and EER, respectively, compared to a state-of-the-art deblurring method. 
    more » « less